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SUMMARY 
In  an earlier paper the uniform shear flow past a sphere was 

studied, by investigating how vortex lines are deformed by the 
‘primary flow’ (flow in the absence of shear), and deducing the 
‘ secondary ’ vorticity field (first approximation for small shear). 
I n  another paper the image system associated with each element 
of secondary vorticity was found, whence the Biot-Savart law 
can be used to determine the secondary flow field by integration. 
The integration is here carried out for the ‘ downwash ’ (secondary 
flow component perpendicular to the undisturbed flow, down the 
velocity gradient) on the dividing streamline. Difficulties due to 
the infinite domain of integration and singularities of the integrand 
are overcome by selecting variables of integration carefully and 
using known analytical properties of the secondary vorticity. 
From the computation of downwash is inferred the first approxi- 
mation (for small shear A )  to the ‘ displacement ’ 6 (displacement 
of the dividing streamline, up the velocity gradient, far upstream 
of the sphere). If U is the upstream flow velocity and u the radius 
of the sphere, the computed value of lim( U6/Aa2) is 0.9. 

Details of the calculation show that the secondary trailing 
vorticity is not an important contributor to the displacement, 
The downwash is due almost entirely to vorticity upstream of the 
sphere (Hall’s earlier simplified theory gave good results, e.g., 1.24 
instead of 0.9, because it concentrated on the effect of local vorticity 
in producing downwash) ; further, this produces displacement 
principally through its image vorticity. 

The relation between theories for a sphere and experimental 
results on Pitot tubes (beginning with Young & Maas 1936) is 
discussed. Theoretical evidence on tertiary- and quartary-flow 
effects is used here in the light of recent work which renders the 
successive-approximation sequence uniformly valid at infinity. 
The conclusion is that the theories, taken together, are not incon- 
sistent with the experimental evidence that (i) at values of the 
‘ shear parameter ’ Aa/U at which the displacement is measurable 
the ratio S/u seems to have asymptoted to an approximately constant 
value, and (ii) displacement is greatly reduced in supersonic flow 
(Johannesen & Mair 1952) or when ‘sharp-lipped’ tubes are 
wed (Livesey 1956). 

A+O 
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1. INTRODUCTION 
In this paper the mechanism of the ‘Pitot-tube displacement effect’ 

is analysed by further study of the shear flow past a sphere, following on 
threeearlier papers, “ The image system of a vortex element in a rigid sphere ” 
(Lighthill 1956 a, to be referred to  hereafter as I), “ Drift ’’ (Lighthill 1956 b, 
with corrigenda in Lighthill 1957 a, to be referred to collectively as D), 
and “ The displacement effect of a sphere in a two-dimensional shear flow ” 
(Hall 1956, to be referred to as H). 

When a parallel shear flow, such as a boundary layer or wake, is 
investigated with a Pitot tube (that is, a tube with the open end pointing 
upstream and the other end closed by a manometer), it is found that the 
pressure in the tube is greater than the total pressure on the streamline 
approaching the centre of the tube orifice; it is equal rather to the total 
pressure on a streamline displaced in the direction of higher velocities, by 
an amount 6 usually known as the ‘displacement of the effective centre’ 
of the Pitot tube. For the tubes whose ratio of internal diameter di to 
external diameter d, is 0.6, Young & Maas (1936) found that S/de was 
scattered fairly randomly about 0.18, and Macmillan (1956) obtained an 
average value 0.15 for 6/de.  

Two recently observed phenomena enhance the desirability of 
understanding the displacement effect physically. First, in supersonic 
flow, Johannesen & Mair (1952) showed that the displacement effect 
practically vanished in a wake for M = 1-96. Understanding of this result 
is made vastly harder by the presence of the ‘ bow shock wave’ in front of the 
Pitot tube, but in view of the considerable region of subsonic flow between 
that shock wave and the orifice, it is safe to say that no explanation can 
reasonably be attempted until the incompressible-flow phenomenon is 
understood. 

Secondly, although Young & Maas (1936) found some indications that 
S/d, increased slightly with increase of di/de, Livesey (1956) has made 
experiments which indicate that there is practically no displacement when 
di = d,. This condition was obtained by chamfering the front part of the 
tube wall to a cone-frustum shape, so that the orifice became sharp-edged. 
As a check on his experimental technique, Livesey obtained results for 
di/de = 0.6 comparable with those noted above. The contrasted results 
are difficult to understand without a rather full discussion of the mechanism 
of the displacement effect. 

It might be thought that useful data for such a discussion would be 
found by a study of the analogous two-dimensional problem, in which a 
two-dimensional ‘ Pitot channel ’, whose external thickness becomes 2c 
downstream of the nose, is placed in a parallel shear flow. However Hall 
shows (H, Appendix) that the displacement of the dividing streamline in 
this problem is given by 

u 
A c  ’ 

- -  
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For where U +  Ay is the velocity distribution in the oncoming stream”. 
values of U/Ac occurring in practice, this result is approximately 

6 6 Ac A d ,  
de-%=mz8u’ 
_ -  

a value well below the experimentally determined values of the displacement 
for the values AdJU < t which are used in practice. Similar results are 
found for two-dimensional shear flow about cylinders of various shapes 
(see Mitchell & Murray 1955 as well as references in H). Hall shows, 
however, that a three-dimensional theory, which takes into account the 
stretching of the vortex lines of the oncoming shear flow as they pass over 
the body, but still neglects viscous effects, can be used to obtain displacements 
of the right order of magnitude. There is a simplifying approximation in 
Hall’s work, which will be critically examined below by comparison with 
a theory which avoids the approximation, but the results of this examination 
will be found to be favourable. 

Before further detailed discussion it may be worth indicating where the 
subject stands within hydrodynamics as a whole. I t  falls under the general 
heading ‘ secondary flow ’ which is used to describe what happens when a 
parallel shear flow is disturbed in a three-dimensional manner (for example 
by being led round a bend in a pipe or channel ; or deflected by a pressure 
gradient transverse to the streamlines; or subjected to Coriolis force as 
in meteorology ; or confronted with an obstacle as in the present problem). 
More particularly, it is used to denote the departure of the disturbed flow 
from a so-called ‘ primary flow ’, in which the streamlines are the same as 
if the original parallel flow had been uniform instead of sheared. 

There are two useful ways of looking at secondary flows. In the older 
approach (see, for example, Goldstein 1938, chap. 2) one considers what 
unbalanced pressure gradients are implied by the primary flow when 
account is taken of inertial forces, altered in magnitude because the original 
parallel flow is not really uniform. The secondary flow is regarded as 
maintained by such pressure gradients, and limited by viscous resistance. 
This view of the matter, though always of qualitative value, leads to useful 
quantitative results only at rather low Reynolds numbers, when the inertial 
forces may be regarded as a small perturbation of a rCgime dominated by 
viscous resistance (Dean 1927, 1928 ; Cuming 1951). 

In flows at high Reynolds numbers it has therefore become usual 
(Squire & Winter 1951; Hawthorne 1951, 1954; Hawthorne & Martin 
1955; Preston 1954) to seek quantitative results by another method, 
namely study of the vorticity field. The technique used can be interpreted 

* In the last sentence of this Appendix, note that ‘‘ on the body ” should 
read as “ at infinity”. (To make I) = 0 the dividing streamline, I)1 must tend to 
- +Aca as the external body surface becomes flat. But a bounded harmonic function 
must tend to the same limit at infinity in all directions. Hence also upstream 
t,bl +. -+A?, so that t,b - Uy++Ay2-&Ac2 and the displacement 6 of the dividing 
Btreamline t,b = 0 satisfies (A.9).) Also, in equation (A.8), +A should read as +Af .  
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geometrically as a study of how vortex elements in the original shear flow 
are stretched and rotated by the primary flow, yielding a ‘secondary vorticity 
field’, whose associated velocity field is the ‘secondary flow’. I n  D, a 
mathematical approach was described which, while essentially equivalent 
to those of the authors cited, corresponds rather more directly to this 
geometrical picture. 

Such a method is obviously of only approximate validity, partly because 
it neglects diffusion of vorticity by viscosity or turbulence, and partly because 
the vortex elements are in reality stretched not by the hypothetical primary 
flow but by the exact flow. The  latter inaccuracy can in principle be reduced 
by calculating a ‘ tertiary vorticity field ’ by considering the stretching and 
rotation of vortex lines by the combined primary and secondary flows, 
and deducing a ‘ tertiary flow ’ from it, and one can even consider quartary 
flows, as Hall was able to do (H, p. 154) by the use of his simplifying 
approximation. 

The  vortex approach to secondary flow has so far had the greatest 
success with internal flows (through bends in pipes, or cascades), for which 
the calculation of the velocity field from the vorticity field can be fairly 
straightforward. With external secondary flows, such as those resulting 
from parallel shear flow past an obstacle, this calculation is more difficult, 
and work apart from Hall’s (H) has been limited to calculations of the 
secondary vorticity field (Hawthorne 1954; Hawthorne & Martin 1955 ; 
and D, $2 and $7). The  problem of how to deduce the secondary velocity 
field without making Hall’s approximation is considered in some detail in 
this paper, partly to establish the value of Hall’s approximation, partly 
to improve understanding of the effect, and partly to improve techniques 
for the mathematical calculation of three-dimensional, fully rotational 
flows. 

The  calculations are still confined to the case of a sphere, which can be 
regarded in many ways as a typical bluff obstacle, The  work was consciously 
prepared for in D by the calculation of the secondary vorticity field, and 
in I by the calculation of the image system of a single vortex element in the 
sphere. This type of image approach, combined with the Biot-Savart law, 
is found to be more convenient in the present problem than any approach 
based on images of complete vortex lines. 

The  relevance of calculations for a sphere to the Pitot-tube problem is 
supported by the finding that vorticity downstream of the sphere contributes 
negligibly to the displacement effect. This also kills a plausible hypothesis, 
namely that secondary trailing vorticity might be largely responsible for the 
displacement effect, which therefore would be greatly reduced at supersonic 
speeds for which the trailing vorticity has no upstream influence. 

A more correct physical interpretation of the results, as discussed in $ 4, 
is that in all cases the image system of the vorticity upstream of the obstacle 
is the main cause of the displacement. It is shown in $ 5  how this can be 
regarded as responsible for the altered situation when either a supersonic 
main stream or a sharp-lipped orifice is used, 
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2. EVALUATION OF THE SECONDARY DOWNWASH AHEAD OF THE SPHERE 

The shear flow past a sphere will here be studied in the notation set out 
in D. Thus, Cartesian axes are used, with origin at the centre of the sphere, 
such that far upstream the velocity field is 

where suffixes denote components. In  addition, spherical polar coordinates 
r ,  8, X such that 

are used ; in these coordinates the sphere is r = a. 
The primary flow is the irrotational flow about the sphere, associated 

with an upstream velocity field as in (1) but with A = 0. The secondary 
flow represents the first-order correction for non-zero A :  thus, it is the 
term in Aal U in an expansion in powers of that non-dimensional parameter. 

Certain 
asymptotic properties of the secondary velocity field were derived in D, (3 3. 
Here, such further properties of it are derived as are necessary to determine 
the displacement of the stagnation streamline to the first order in the 
parameter Aa/ U. 

For this one must know the distribution along the line y = x = 0, 
x < - a  (which is the stagnation streamline for A = 0) of the secondary 
flow component normal to that line. This component is actually in the 
negative y-direction. I t  may be referred to as ' downwash ' if we think of 
the upstream velocity distribution as horizontal and increasing upwards. 
Accordingly, we write D(s) for the value of ( - v,) at the point ( - s, 0, 0), 
and call D(s) the ' downwash function '. 

Now, the secondary flow may be calculated in three parts as explained 
in D, $ 3 .  First, there is a part, which is the gradient of a potential 4, 
vanishing at infinity, and whose normal velocity component on the surface 
just cancels out that associated with the uniform shearing motion v, = Ay, 
vv = v, = 0. I n  the case of a sphere this condition may be satisfied by a 
single solid harmonic (easily obtained by inspection), namely 

V %  = U+Ay, vv = U, = 0, (1) 

x = rcos8, y = rsinocosh, x = rsinesinh (2) 

The secondary vorticity field was determined in D, $7.  

Aa5xy 
91 = 7. (3) 

This part may be regarded as the velocity field due to the image system of 
the undisturbed vorticity field (0, 0, -A) in the sphere r = a ;  we see 
that this image system consists of a single quadrupole at the centre. The 
contribution of this part to the downwash function D(s) is 

Aa5 
D,(s) = - 

3 8  * (4) 

Secondly, there is the Biot-Savart field of the 'vorticity change' wl.  
that is, the difference between the secondary vorticity field and its undisturbed 
value ( O , O ,  -A). The contribution of this Biot-Savart field (D, (82)) to 

F.M. 2 L  
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T o  evaluate (5) it is convenient to change over to spherical polar coordinates, 
when it becomes 

olr s sin 0 sin X + w1,(s cos 0 + r)sin X + wlI(s  + Y cos 0)cos ,1 
(s2 + 2sr COSB + Y2)3/2 

x r2sin 0 drdodh. (6) 

Thirdly, there is a further irrotational part of the secondary velocity 
field, which must be added to  the Biot-Savart field of w1 so that together 
they may satisfy the boundary condition on the surface of the sphere. 
I n  I this was shown to be simply the Biot-Savart field of a certain system 
of image vorticity inside the sphere. Using the term ' strength ' to denote 
the product of the volume d V  of an elementary region with the vorticity 
inside it, it was shown that transverse vortex elements of strengths w,dV 
and w,dV have images of strengths (-u/r)o,dV and (-u/r)oAdV res- 
pectively at the inverse point (a2/i.,8,X) while a radial vortex element of 
strength o, d V  has an image system consisting of (i) a radial vortex element 
of strength ( + U / Y ) W ,  d V  at the inverse point, and (ii) a uniform line vortex, 
of strength ( - l/a)wl. d V  per unit length, stretching between the inverse 
point and the origin. 

It follows by comparison with (6) that the contribution of this image 
vorticity to the downwash function D(s) is 

- 
wlr  s sin 0 sinh - wlo(s cos 0 + u2/r)sin h - wIA(s  + (u2jr)cos 0)cos h 

X 
(s2 + 2s(u2/r)cos 0 + (u2/r)"3'2 

wlr sin X cos e + u2/Y 

{s2 + 2s(u2/r)cos 6 + (u2/r)2)112 
- cos B)] r2 sin 9 drdedh, 

(7) 
where the coefficient of ( -wlr /u)  inside the square brackets is obtained by 
integrating with respect to Y from 0 to u2/r (the value of Y at the inverse 
point) the coefficient of wl ,  in the curly brackets in (6). 

Now, olA takes the simple form (D, (81)) 

W 1 I  = ( A  cod){ 1 - (1 - ;)-"'}. 
As a result, the terms involving wlA in D2(s) + D3(s), which may be designated 
as D,(s), can be greatly simplified. Since 

we have 
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the last term (independent of s) being obtained by evaluating the infinite 
integral in terms of factorial functions. 

The  vorticity components wlr and 0 1 8  can be written 

wl, = ( A  sinX)F,(r, O ) ,  w1e = ( A  sinh)Fe(r, 8), (11) 

where in D, 5 7 the quantities F, and Fe were tabulated for points on three 
particular streamlines, and determined asymptotically near the axis of 
symmetry, near the surface of the sphere and far from the sphere. In  
terms of F, and Fe the terms involving wlr and w1,g in D2(s) + D3(s), which 
may be designated as D,(s) and De(s) respectively, may be written as follows : 

s sin B + [ (s2 + 2sr COS 8 + r2)3/2 
D,(s) = aA Jam [ F,(r, 8)r2sin8drd8 

I n  the numerical evaluation of the integrals (12) and (13) difficulties 
arise from two main sources. First, there are the ordinary difficulties 
involved in the numerical evaluation of any integral when the domain of 
integration is infinite. These (as we shall see) can be overcome in the 
ordinary manner, because of our rather full knowledge of the behaviour of 
the integrands for large ria. 

The  second source of difficulties is the unboundedness of the integrands. 
For every s there is one value of r (namely r = s) for which one of the 
denominators in (12) and (13) vanishes on 8 = T. I n  addition, F, and 8’0 

have singularities, both on Y = a ,  where F e  is actually infinite, and on 8 = 0, 
where F, is actually infinite. Thus, there are difficulties in the neighbourhood 
of the whole dividing streamline (8 = T, r = a, 8 = 0). 

This indicates the advantage of a change in the variables of integration. 
Instead of r, B we use po, 8, where po, introduced in D, $ 5  and defined by 
the equation (D, (60)) 

is constant along each streamline*-. Then the integration with respect to 8 
can be carried out first (and here the fact that this integration is over a 
finite range 0 < 8 < T is an advantage); the singular character of the 
integrands comes in only when the second integration (with respect to po) 

* Stokes’s stream function +Up: would do almost as well as po as a variable of 
integration, but there are some small advantages in favour of po in the present problem. 

2 L Z  
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is carried out, and there it is confined to the single point po = 0 which 
represents the whole of the dividing streamline. 

T o  change the integrals (12) and (13) into integrals with respect to po 
and 8, one has only to replace the differential product drd8 in each by 

z(r3 - a3) 
drdd = (g)o dpo d8 = dp, do. 

constant, P"(Y3 + i.3) 

The ranges of integration become 0 < 8 < T, 0 < po < m. 
The integrations with respect to 8, keeping po constant, were carried 

out by Simpson's rule, with equal intervals of 10" for 8, for three values 
(0.25, 0.5 and 1.0) of po/a, using the values of r/a,  F, and Fe given in D, 
table 3 ,  for the required combinations of values of 8 and po/a. At a few 
places, where the values of the integrands made it appear probable that 
Simpson's rule was being slightly strained, intermediate values were 
computed and used to improve the approximation. 

If the result of such integration is written as D,.(s,p,) in the case of the 
integrand of D,(s), so that 

f-W 

and similarly with DO, the problem remains of carrying out the integration 
with respect to po. This was done by using Simpson's rule in different 
forms for two parts of the integral, writing 

1 
12 

+ - u[D,(s, 0) + 4D,(s, $a) + Dr(S, B4l + 

In this method one requires only those three values of D,(s,po) which 
were computed as described above, and the two limiting values Dr(s, 0) and 
lim(pED,(s, po)}. An equation similar to (17) is used also for Do. 

Now it may be shown that both D,(s,O) and De(s,O) are zero. This 
result is deduced from the detailed behaviour of F, and FB as p0+0 
derived in D, $ 7  (equations (78) to (80)). The singularity at 8 = T, Y = s 
due to inverse (3/2)th powers in (12) and (13) produces no effect in Dr(s, 0) 
because F,  vanishes on 8 = T, and none in D&s, 0) because of the factor 
scos8+r in the numerator. The singularity of Fe on Y = a is cancelled 
out by the vanishing on Y = a of the term in square brackets in (13). The 
contribution to De(s,O) as well as to D,(s,O) of this part of the streamline 
po = 0 therefore vanishes, since the coefficient of dpod6' in the differential 
element (15) vanishes as po + 0 for fixed 8. Finally, the singularity in F, 
as 8 + 0 produces no effect in D,(s, 0) because of the vanishing as 8 -+ 0 
of the term in square brackets in (12). 

&%-+a 
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By(D, (77)) ‘The limits aspo + co,on the other hand,donotboth vanish. 

F, - - k(:)3c0s6, F, ~ ( ; ) ~ s i n O ,  Y -pp,cosecO, (18) 

as po -+ CQ. Hence by (13) and (15) 
a 

( 1 9  
rAa4 

- - -  

l a 3  
Do($, po) - $A /I{ - z(---) sin36 cos 0 

64p: s2 ’ 
but 

D, (s, Po) - ;A ,I( ( E) sin40}(p: coseczO do){ O( A)} = O( i), (20) 

Note that the distant transverse vorticity is effective entirely through its 
images in the sphere (that is, only the second term in square brackets in 
(13)  contributes to the asymptotic result (19)) ; the distant radial vorticity 
.is less effective* because its image system consists of a nearly cancelling 
pair of vortex elements of opposite sense. 

Everything has now been found to enable D,(s) and Do(s) to be determined 
from equation (17). This has been done for s/a = 1 and 42, and the results 
are given in table 1, together with values of D, (see (10)) and D, (see (4)), 
the contributions from the ‘ ring vorticity ’ q, and from the image system 
of the undisturbed vorticity distribution. The four terms are added to 
produce the total downwash given in the last column. 

0.04, 0.083 0.083 0.33 

Table 1 .  

For comparison with these values of D(s) we have for large s/a, by 
(D, (W, 

D(s) = ( - z’ly);L. = -3.y = = 0 - A(Vh+- 4rrs2 hVh) = $ ( q ) Z A a ,  (22) 

where we have used the facts that the volume V ,  of the sphere is $a3, 
and the volume V ,  of fluid, whose mass is the ‘hydrodynamic mass’ 
associated with the sphere’s motion, is +Vb. Table 1 shows that (s/a)2D(s) 
is 0.97 for s/a = 1 and 0.66 for s/a = d2, so that it is tending fairly rapidly 
to the asymptotic value 5 = 0.42 as s/a --f m. 

* Actually, a more detailed analysis than that given above shows that 
BAS, Po) = o(p;4). 
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3. FIRST-ORDER DISPLACEMENT OF THE STAGNATION STREAMLINE 

The  stagnation streamline, or ' dividing streamline ', must be in the plane 
of symmetry x = 0 (or X = 0) and on it 

v,Ydd-vv,dr = 0. (23 ) 

For the irrotational flow about a sphere this equation becomes 

U cos 0 1 - - Y dd + U sin d( 1 + $) dr = 0, ( ::) 
which can be put into the form 

d{ Y sin d( 1 - $)"'> = 0, 

after multiplying through by U-l( 1 - a3/~3)-1'2. 
must be used is 

The  solution of (25) that 

rsind(1- $>," = 0, 

since other solutions give Y sin0 --f 00 as Y + a, which is impossible if the 
streamline is to meet the body. 

When A # 0 we can obtain the displacement of the upstream part 
0 = n= of the stagnation streamline by modifying the Z I ~  term in (23) by 
including the downwash function D(s) of $ 2  in it. The  term in vr need not 
have a secondary flow term included, however, since it is multiplied by 
rd8 which is itself a small" quantity of order A (vanishing, as we have seen, 
for A = 0). 

Hence 0 = 0 or n= off the sphere r = a. 

Thus, (24) is replaced by 

Ucosd 1--  rdO+ Usind 1 + -  -D(Y)  dr = O .  (27) ( "I) { ( ;:3) } 
Equation (27) after multiplication by U-l( 1 - a3/r3)-lIz, an integrating factor 
already used above, becomes 

D(r)  dr '{' sin "( - $ ) ' I 2 }  = u( 1 - a3 /y3 ) l /Z  * 

Hence the dividing streamline takes the f o r p  

1 D(s) ds 
rs ind = 

that solution of (28) being chosen for which r sin 0 remains finite as Y -+ a. 
Thus, the displacement of the stagnation point on the sphere is 

2a Aa2 
lim(r sin 0) = - D(a) = 0.65 - , 
r-ra 3u U 

* Actually, r d0 becomes less small as Y + a, as the solution to be obtained shows, 
but since v,. --f 0 as Y 4 a the argument is unaffected. 
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where table 1 has been used, while the displacement 6 of the stagnation 
streamline far upstream of the sphere (the main object of our investigation) 
is 

T o  compute 6 numerically we substitute s = a cosec a in ( 3  1)’ giving 

(32) 
an D(a cosec cc)cosec a cot a 

doc. 
U6 

~ a 2  = I, Aa(1- sin3a)1/2 

If Simpson’s rule with interval +r is used in (32), we obtain 

-t- D(a) lim coso! ] (33) 
Aa a-ttn (1 - ~ i n ~ a ) 1 ’ ~  

D(a42) + 2 D ( 4 )  = - - 7 ~  - +7.036- 12 f 5  12 Aa 3 A a  
1 
12 = - 40.417 + 2.3,, + 0.647) 

= 0.8, = 0.9. (34) 
The  use of a large interval &r for Simpson’s rule may appear drastic, 

but the numerical value of the terms, not far from being in the ratio 1 : 4 : 1, 
indicates a smoothness in the integrand which justifies the conclusion that 
U6/Aa2 = 0.9 to one place of decimals. The  integrations with respect 
to 13, unless 19 values had been used and a few more interpolated here and 
there, were likely to have caused more error than those with respect to 
po or s which used 5 and 3 values respectively but had far greater smoothness 
in the integrands. Greater accuracy than one place of decimals is not 
required as the theory is only an asymptotic one for small AalU in any case. 

It is really a quadruple integration which has been performed to get 
(34). One has integrated with respect to s a function part of which consisted 
of integrations with respect to po and 0 of functions which in D were derived 
as derivatives of the ‘ drift function ’ t ,  which is itself defined as an integral. 
T h e  result of all this work, which it has taken three papers to expound 
(although the first two, D and I, each had, in addition, a more general 
application), is principally the numerical value (34). However, it will 
be seen in the next section that some useful qualitative results can also be 
found by studying intermediate steps of the calculation. 

4. DISCUSSION OF RESULTS AND COMPARISON WITH HALL’S THEORY 

It is helpful to begin discussing the results of $2 and $3 by comparing 
them with those of Hall’s much simpler theory of the same shear flow past 
a sphere. This  is based on one principal approximate assumption 
(H, p. 145): that on the plane of symmetry z = 0 the velocity gradient 
av,/ax takes the same value as in the primary (irrotational) flow. This 
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assumption determines the velocity field (us, u,) in the plane of symmetry 
as the sum of the primary velocity field and an additional velocity field 
satisfying the two-dimensional equation of continuity 

%+av, ,=, .  
ax ay 

The only non-zero vorticity component 

av, av, 
ax ay ma= --- 

in this plane can also be determined from Helmholtz’s equation 

(35) 

since the value which av,/az takes on the plane z = 0 has already been 
assumed. The two-dimensional velocity field (uz, v,) can then be determined 
without reference to conditions outside that plane, from a knowledge of its 
divergence and curl, from the boundary condition on the body, and suitable 
boundary conditions at infinity. 

The latter boundary conditions have to be altered somewhat from their 
original form. Two-dimensional flows about obstacles have the well-known 
lack of uniqueness arising from arbitrariness in the circulation ; Hall avoids 
this(tacitly, inH, (2.15)) by selecting onlythe solutioninwhich the disturbance 
velocities fall off as fast as the inverse square of the distance from the origin 
(as indeed they must in the real flow); other solutions, with additional 
vorticity inside the sphere, would have disturbance velocities falling off 
as the inverse first power. On the other hand, to obtain existence of 
solutions, the condition that disturbance velocities tend to zero as r -+ co 
has to be applied only in a bounded interval of y (H, (3.44)), but again this is 
reasonable because the primary flow is a sensible first approximation to 
the motion only in such a region. 

With these assumptions the equations are solved by means of a power 
series in the non-dimensional shear parameter Aa/U. The coefficient of 
AalU is an approximation to the secondary flow discussed in $2  and $ 3  
above. The coefficients of ( A U / U ) ~  and ( A u / U ) ~ ,  also obtained, are 
approximations to what may be called the tertiary and quartary flows. 

In  order to form an estimate of the value of Hall’s approximate 
assumptions, we may compare his results for the secondary downwash 
function D(s) with those obtained in $2 and $3.  He gets, in our notation, 

To  check this, see H, equations (2.5), (2.9), (2.11), (3.16), (3.17) and (3.21); 
in Hall’s notation, equation (38) is 

( -o )8=o  = UK - - - . 
( i 3  :!) (3 9) 
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Table 2 compares values of the secondary downwash function given by 
this paper and by Hall’s theory (that is, by (38) above). I t  is seen that 
Hall’s method of approximation does not lead to any large departure from 
our more exact values. His downwash is an overestimate ; so, therefore, 
is his inferred value of U6/Aa2, which, as deduced from (38) and (31); 
is 1.24. For comparison, if we integrate (31) approximately by means of 
equation (33), using Hall’s values of D(s) given in table 2, we obtain 
U6/Aa2 = 1.20. Neither result exceeds our value 0.9, obtained with far 
greater labour, by as much as 40%. 

This paper 
H 

D(u)/Aa D(u42)lAa lim(s2D(s)/Aa3) 
s+ m -- 

0.97 0.33 0-42 
1.39 0.45 0.50 

Table 2. 

Now, in discussing the reasons for the success of Hall’s approach to the 
problem of estimating secondary downwash and the displacement effect, 
it must be remembered that he uses the correct secondary vorticity field in 
the plane z = 0. (For, in calculating wz to  the first approximation, one 
may legitimately put av,/az in (37) equal to its primary-flow value; and 
indeed Hall’s expression for w, in the plane z = 0 agrees with our equation 
(8).) His secondary flow field in that plane, however, is simply one velocity 
field which satisfies the boundary condition and has the right vorticity in 
the plane (to be precise, it is the one whose two-dimensional divergence 
vanishes). In  reality, the secondary velocity field can be determined only 
from the complete secondary vorticity field, both on the plane and off, 
as in 3 2 above. I t  is easily checked that the two-dimensional divergence of 
this field in the plane z = 0 will not in general be zero. 

Thus, Hall’s assumptions are equivalent to the view that the main thing 
is to pick a velocity field which has the right vorticity locally, on the assump- 
tion that the vorticity field near the plane z = 0, with its image vorticity, 
will be much more potent in generating the velocity distribution on z = 0 
than is the vorticity field away from z = 0 (and, in particular, the secondary 
trailing vorticity) in combination with its images. Now, this statement 
was already verified far upstream of the body in D, 3 3 and corrigenda, from 
which it appeared that such an approach would give a value of the secondary 
downwash only 20% above the exact value far upstream, as is now confirmed 
by the results in table 2. For it was shown (D, (19) and (23)) that the velocity 
field far upstream which results directly from the local vorticity distribution 

but that the complete asymptotic form includes also a term associated with 
the trailing vorticity, which (D, (86)) changes the V b  + V h  in the downwash 
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implied by (40) into V,  + Vh, as was used in (22) above. Thus in the case 
of a sphere (for which V h  = &V,) expression (40) is an overestimate by 
exactly 20%, which identifies it with Hall's result in this region. 

Nearer the sphere itself Hall's theory still gives reasonably good results 
for the secondary downwash. T o  explain this it is desirable to find out 
how much of the secondary downwash calculated at s /a  = 1 and 212 in $ 2  
comes from trailing vorticity alongside and downstream of the sphere, which 
was ignored in Hall's theory. 

I n  addition, there is an independent interest in asking how much 
contribution comes from trailing vorticity in the region where a turbulent 
wake would be found in the real flow, because of course the secondary 
vorticity distribution which has been used would be seriously inaccurate 
in this region. Accordingly, the contributions to D(a) and D(ad2) from 
vorticity components wlr and wI0 on parts of the streamlines po/a = 0.25 
and 0.5 with 8 < 90", and on parts of the streamline po/a = 1 with 8 < 45", 
were separately evaluated. Their contribution to  US/Aa2 was found to be 
exclusively negative, but amounted only to - 0.06 altogether. There 
is some indication here that the applicability of the solution will not be 
much affected by the inaccuracy of the assumed distribution of vorticity in 
the wake. 

The  remaining contributions to U6/Aa2 from wlr and w10 are all positive ; 
examination shows, however, that the principal contributions come from 
fairly near the upstream axis 8 = T. For example, positive contributions 
from the region 8 < 120" amount to +0-06, just cancelling the (also small) 
negative contribution from the wake region. 

It is concluded that trailing vorticity cannot be regarded as responsible 
for the downwash on the axis upstream of the sphere, and this is compatible 
with the good accuracy of Hall's approximation. Physically, the result is 
due mainly to cancellation of the effect of trailing vortices by the effect of 
their image vortices. 

Having examined the detailed computations to dispose of the suggestion 
that trailing vorticity is responsible for the displacement effect, we may 
now ask what, physically speaking, is principally responsible for it. Again, 
the computation in § 2 and 3 3 appears to give a clear answer, namely : of 
the remaining vorticity and its images, the images make the main contribution 
to the downwash function D(s) and so to the displacement effect. 

T o  show this, one repeats the calculation of 5 2 and 9 3 with the terms due 
to ulr and wl0 for 8 < 120" omitted (these terms were described above as 
due to trailing vorticity, and their net contribution to U6/Aa2 was found to be 
zero), and divides the remaining terms into those due to vorticity outside 
the sphere and those due to  image vorticity. Then the contribution to 
U6/Aa2 of the former is found to be 0.08 and the contribution of the latter 
0-81. 

Actually, the vorticity outside the sphere makes its contribution almost 
wholly in the region far upstream; in fact the result lim(s2D(s)/AaZ) = 

is entirely due to vorticity outside the sphere, and this contributes 0.11 to 
8-b OD 
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U6/Aa2 in the calculation. On the other hand, downwash near the sphere 
is almost entirely due to image vorticity; the downwash at s/a = 1 due 
to vorticity outside the sphere is only 0.15Aa (compare 0.82Aa due to image 
vorticity), and that at s/a = 42 is -0.03Aa (compare 0-36Aa due to image 
vorticity) ; their combined contribution to U6/Aa2 is - 0.03. 

To sum up the results of this section, the expected effect of trailing 
vorticity (or more precisely of all the vorticity wlT and wl0 for 8 < 120") 
is cancelled out by that of its image vorticity ; the effect of the remaining 
vorticity outside the sphere, on the other hand, is small compared with that 
of its image vorticity. 

The images of the undisturbed vorticity distribution (0, 0, -A),  and of 
the ' ring-vortex ' part wll of the change from the undisturbed distribution, 
are especially potent in producing downwash, as is obvious geometrically 
from the rule for constructing image vortices, and they account for a part 
0.68 in US/Aa2. The images of the vortex elements wlr and wl0 in 6' > 120" 
by contrast account for only 0.13. 

5. THE PITOT-TUBE PROBLEM DISCUSSED IN THE LIGHT OF THE RESULTS 

Now, calculations like those of this paper are difficult to apply to the 
problem of the Pitot-tube displacement effect, both because of the substantial 
difference of shape between a sphere and a Pitot tube, and because the 
calculated amount of the secondary flow, and hence also of the displacement, 
increases linearly with the shear parameter AaIU;  by contrast, in the range 
of Aa/U at which experiments have proved possible, the displacement 
has been found to vary little with Aa/U. 

On the first difficulty, Hall points out (H, p. 146) that, if a sphere were 
used as a Pitot tube, then, provided the round opening in the front of the 
sphere were large enough* to include the displaced position of the stagnation 
point (see (30) above for our estimate of this position), the pressure measured 
would be close to the stagnation pressure on the dividing streamline. He 
goes on to argue that this 'spherical Pitot tube' would in many ways be 
equivalent to an ordinary Pitot tube of somewhat smaller diameter. This 
is well borne out by the subsequent work of Livesey (1956), who tested a 
Pitot tube with a hemispherical nose and a ratio dJd, = 0.5 of the internal 
and external diameters. The studies of $ 4  indicate that the shape of the 
front of the tube, which agrees with that of the sphere, is more important 
than that of the rear (which extends as a long cylinder instead of being 
terminated), since the trailing vorticity is unimportant, and so this tube is 
probably a lot closer than conventional ones are to the ideal 'spherical 
Pitot tube '. (The main difference between the secondary flows in the two 
cases will be further discussed at the end of this section.) The measured 
displacement was O.lOde, as compared with 0.16de obtained by Livesey 

*He  notes that a small hole would in any case be inacceptable because of the 

FOR A SPHERE 

resulting sensitivity to yaw. 
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(as well as by other workers) on tubes of the form used by Young & Maas 
(1936). This observed difference is in agreement with Hall’s suggestion. 

Hall then goes on to meet the second difficulty by saying that the 
displacement function which we have to explain is not a constant, but rather 
is of the form 

- 6 = csgn($), 
a 

where sgnx is + 1 when x > 0 and is - 1 when x < 0. (For the dis- 
placement is in the direction y increasing if A > 0 and in the direction 
y decreasing if A < 0.) In  (41) the observed value of the constant C is 
about 0.2 (since the external diameter d, of the ‘ spherical Pitot tube ’ just 
discussed is 2a). Now, the discontinuous behaviour (41) is not plausible 
on theoretical grounds, and it is much more reasonable to suppose that 
the true behaviour is something like 

6 
- a = Ctanh(Xg) ,  

say (where any odd function tending to 1 at + w; could really be substituted 
for the tanh), but that X is large enough so that the tanh takes the value 
+ 1 or - 1 for all AalU at which accurate measurement is possible (and 
indeed for small Aa/  U the effect measured is so small that the experimental 
points become intolerably scattered). If (42) were correct the limit of 
U6/Aa2 as A a / V  -+ 0 (found in 8 3 to be 0.9) would be CX, so that values 
C = 0.2 and h = 4.5 would be consistent with the results of this paper. 

T o  test these ideas one should find the next term in the expansion of 
61a in powers of Aa/U,  which according to (42) would be 

a (43) 

with the values of C and h just suggested. The  evaluation of the next term 
therefore requires a study of both the tertiary and quartary flows (that is, 
both the square and cube terms in the expansion of the velocity field in 
powers of AajU) ,  

Accordingly, Hall evaluates these, with the aid of his basic approximation 
(described above at the beginning of 3 4). ilfter fairly lengthy calculations, 
he obtains for the displacement effect 

6 A a  
a LT 
- = 1.24- - I . I ~ ( $ ) ~  + ... . (44) 

‘l‘he coefficient of (Aa/U)3 is of the right sign, but is five times too small 
for agreement with (43). Kow, some of this disagreement may be due to 
selection of the special function tanh in (42) ; if one took simply a cubic 
levelled off constant beyond its maximum, the coefficient 6.1 in (43) would 
be replaced by 2.7. However, even with this form, the effect of quartary 
upwash on the displacement is still definitely underestimated by Hall’s 
theory. 
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In the first place, the cumulative error in 
applying Hall’s approximation three times to obtain successively _the 
secondary, tertiary and quartary flows must greatly exceed the error in 
applying it once only, which already produced an error in the displacement 
of the order of 30%. Again, Hall’s approximation gives erroneously only 
the divergence, not the curl, of the secondary flow field in the plane of 
symmetry ; but both divergence and curl will be erroneous in the case of the 
tertiary and quartary flows. 

A more clear-cut argument, which also appears to explain the sign of 
the error in Hall’s calculation, is provided by some discussion in D, $3 ,  
which is greatly amplified and extended in a forthcoming paper (Lighthill 
1957 b). 

There it is shown that far upstream the tertiary flow tends to zero more 
slowly than the secondary flow, and that similarly the quartary flow is greater 
in magnitude than the tertiary (not, in fact, tending to zero at all). Hall’s 
equations give a smaller order of magnitude for the quartary upwash, at 
least far upstream, than that indicated by the exact theory. This indicates 
that the true reduction of the displacement by the quartary flow may be 
greater than Hall predicts. 

Actually, the successive-approximation sequence is not uniformly valid 
for large Y. In  this region the disturbances can best be treated as a small 
perturbation of the exact parallel flow, which leads to their expression as 
a Hankel transform of suitable solutions of the steady inviscid case of the 
Orr-Sommerfeld equation for the shear layer. 

The solution so obtained can be represented as the sum of secondary, 
tertiary, quartary flows and so on, with downwashes of orders sr2, s-1, 1, 
respectively, only for moderately small s. For larger s the downwash 
behaves as a more complicated function, which ultimately falls off like 
s - ~  as s + co. The solution of this paper which assumes that the falling-off 
is like s - ~  all the way therefore overestimates the displacement. It can be 
shown (Lighthill 1957 b) that an approximate form of the correction to 
6 due to departure from the secondary flow for large s is 

This is hardly surprising. 

where the shear A has been supposed a function of y (measured from an 
origin at the centre of the sphere). This term of order u3 is negative, and is 
intermediate in order between the secondary flow term 0.9Aaa/U of this 
paper and Hall’s quartary-flow term of order a4. This again gives a reason 
for the fairly rapid turning over of the graph of 6/a against Aa2/U. 

There is one more difficulty in the comparison between the theory for 
the sphere and the experimental results, which can be investigated effectively 
in the light of the theory just described. 

First, if an actual sphere were used as a Pitot tube, the fact that the sphere 
experiences drag, and has the wake associated with its drag, modifies the 
upstream character of the primary irrotational flow, especially far from the 

I t  can take two forms. 
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body. There it is asymptotic not to a ‘doublet’ motion but to that due 
to a source of strength Dlp U, where D is the drag. Accordingly the upstream 
behaviour assumed in our solution is incorrect. The weight of this objection 
should not, however, be overestimated. For a sphere of radius a the doublet 
strength is 2nUa3, while the source strength even under the high-drag 
conditions obtaining with laminar separation (with, say, C, = +) is only 
$.rrUa2. Hence the source produces a velocity reduction upstream of the 
body greater than that due to the doublet for r > 16a only, so that it could 
hardly be expected to be important. 

Secondly, for a real Pitot-tube form, the upstream behaviour of the 
primary irrotational flow will again be asymptotically that of a source, this 
time of strength n-Ua2, where a is the external radius. Obviously it is more 
questionable in this case whether the results calculated for the sphere are 
applicable, even though the Pitot tube may have a hemispherical nose, 
because of the larger source strength. In both cases the problem is made 
more serious by the result (D, (29)), which gives 

Am 
4n us ’ D(s) -- 

where m is the source strength. If the downwash really satisfied (46), 
then the integral (3 1)  for the displacement would be logarithmically infinite. 

However, it is shown in the forthcoming paper already mentioned that, 
when the solution for large s is replaced by a uniformly valid approximation, 
a finite value for 6 emerges. It is shown that the displacement so obtained 
is the same as that deduced from the secondary flow alone if, in the latter, 
the integration be carried only to the value s = s,, described as the secondary- 
flow cut-off. In other words the displacement is the same as if the secondary 
flow penetrated only a distance s, ahead of the source. The distance s, 
is of the order of the width of the shear layer; an approximation to it is 
given by 

logs, = - 1 Jrn (- dA -sgny)loglyldy, 
2 4 0 )  --a, dY (47) 

which makes s, in a sense a ‘ geometric mean of the difference in y-coordinate 
between points in the shear layer and the source. 

These considerations lead to a term 

in the expansion of 6 in powers of a, where in (48) the value of m appropriate 
to a solid Pitot tube of external diameter d,  = 2a has been inserted. The 
term (48) of order aloga in S/a is in addition to the previously found term 
of order a. The logarithmic term certainly is a non-negligible addition in 
this case ; when the integral is as much as 2A, it would increase the coefficient 
of Aa/ U by about a quarter. In the other case, when only the source resulting 
from the wake drag is present, the effect is not very important. In both cases, 



Theory of the Pitot-tube displacement eflect 511 

however, the effect is not a complete change of order of magnitude but 
rather a mere quantitative increase. 

T o  sum up, we may state as the main conclusion of this section that the 
original Young & Maas suggestion of a discontinuous functional dependence 
(41) of S/a on Aa/U is without theoretical support. All the theories agree 
in predicting a continuous functional dependence, which one can only 
assume (in the light of experimental results) becomes slowly-varying for 
values of jAa/U1 in excess of a fairly modest limit, an assumption which in 
the light of the full discussion is seen to be not inconsistent with the theories. 

We may ask, in conclusion, whether the work of this paper gives any 
explanation of two results which were noted as especially interesting in the 
introduction : the great reduction of the displacement effect with supersonic 
flow (Johannesen & Mair 1952) or with sharp-lipped tubes (Livesey 1956). 
Certainly no precise answer is possible in either case, but it is probably 
relevant to both facts that, as shown in $4, the image vorticity is the main 
contributor to the diplacement effect. 

Thus, in supersonic flow about a Pitot tube, the extent of regions of 
vorticity whose image vorticity could affect the downwash on the dividing 
streamline is much reduced-partly because the region of subsonic flow 
is cut off by a shock wave a short distance upstream of the orifice, and partly 
because the flow on streamlines as far away from the axis as po/a = 1 (which 
were found in the calculations of $ 2  to make substantial contributions to 
the downwash) becomes supersonic very soon, and ceases to have a domain 
of influence which includes the dividing streamline. 

Similarly, one may imagine that the ideal Pitot tube with internal and 
external diameters equal (to which Livesey’s sharp-lipped tube is a good 
approximation) produces very little displacement because image vorticity 
in such a tube is reduced, both in magnitude and in effectiveness for producing 
displacement. For, first, the undisturbed vorticity distribution (0, 0, - A)  
has no image vorticity at all in this case. I n  other words, the ‘ first part ’ 
of the secondary flow, as defined in D, 8 3 and in Q 2 above (and which for 
a sphere has the potential (3)), vanishes, since the uniform shearing motion 
by itself possesses no velocity component normal to the surface. 

As to the image system of the vorticity change ol, one may note that this 
will include a uniform vorticity (0, 0, +A)  from some point of the tube 
downstream inside the tube ; for in this region all motion, and hence also 
all vorticity, is doubtless absent. However, the effect of this vorticity 
trapped inside the tube is negligible outside i t ;  even in the corresponding 
two-dimensional case it falls off exponentially, by a factor of en = 23 in one 
diameter. 

Thus, we are led finally to ask about the effect of such disturbance vorticity 
as is placed similarly to that which produced the displacement in the case 
of a sphere. As in that case, the effect of the trailing vorticity will be cancelled 
out by the effect of its images ; and the vorticity upstream of the Pitot tube 
may be expected to make its effect largely through its image vorticity. 
However, since there is DO room inside the surface in the case of a shape like 
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this, the image vorticity must be rather remote-in mathematical language, 
it is on another sheet of a Riemann surface (of three dimensions). 
Accordingly, its image effect upstream may be expected to be less than in 
the case of a more full-bodied shape. 

Again, we have not explained the results by the theory, but merely shown 
that the theory is not inconsistent with them. Clearly, much more work 
will be required before theories of shear flow become fully satisfactory and 
widely applicable. However, the attempt to achieve this end seems to be 
worth making. 
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